一、为什么需要Flink?
当你在电商平台秒杀商品时,1毫秒的延迟可能导致交易失败;当自动驾驶汽车遇到障碍物时,10毫秒的计算延迟可能酿成事故。这些场景揭示了一个残酷事实:数据的价值随时间呈指数级衰减。
传统批处理(如Hadoop)像老式火车,必须等所有乘客(数据)到齐才能发车;而流处理(如Flink)如同磁悬浮列车,每个乘客(数据)上车即刻出发。Flink的诞生,让数据从"考古材料"变为"新鲜血液"。
当你在电商平台秒杀商品时,1毫秒的延迟可能导致交易失败;当自动驾驶汽车遇到障碍物时,10毫秒的计算延迟可能酿成事故。这些场景揭示了一个残酷事实:数据的价值随时间呈指数级衰减。
传统批处理(如Hadoop)像老式火车,必须等所有乘客(数据)到齐才能发车;而流处理(如Flink)如同磁悬浮列车,每个乘客(数据)上车即刻出发。Flink的诞生,让数据从"考古材料"变为"新鲜血液"。
在凌晨三点的数据监控大屏前,某电商平台的技术负责人突然发现一个异常波动:支付成功率骤降15%。传统的数据仓库此时还在沉睡,而基于Flink搭建的实时风控系统早已捕捉到这个信号,自动触发预警机制。当运维团队赶到时,系统已经完成异常交易拦截、服务节点自动切换和用户补偿方案推送。这不是科幻场景,而是Flink赋予企业的真实能力。